104 research outputs found

    An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.

    Get PDF
    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species

    Sampling nucleotide diversity in cotton

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cultivated cotton is an annual fiber crop derived mainly from two perennial species, <it>Gossypium hirsutum </it>L. or upland cotton, and <it>G. barbadense </it>L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between <it>G. arboreum </it>and <it>G. raimondii</it>. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from <it>G. mustelinum </it>and <it>G. tomentosum </it>into <it>G. hirsutum </it>using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (<it>G. hirsutum</it>) × 3-79 (<it>G. barbadense</it>) have been developed to allow high-density genetic mapping of traits.</p> <p>Results</p> <p>This paper describes a strategy to efficiently characterize genomic variation (SNPs and indels) within and among cotton species. Over 1000 SNPs from 270 loci and 279 indels from 92 loci segregating in <it>G. hirsutum </it>and <it>G. barbadense </it>were genotyped across a standard panel of 24 lines, 16 of which are elite cotton breeding lines and 8 mapping parents of populations from six cotton species. Over 200 loci were genetically mapped in a core mapping population derived from TM-1 and 3-79 and in <it>G. hirsutum </it>breeding germplasm.</p> <p>Conclusion</p> <p>In this research, SNP and indel diversity is characterized for 270 single-copy polymorphic loci in cotton. A strategy for SNP discovery is defined to pre-screen loci for copy number and polymorphism. Our data indicate that the A and D genomes in both diploid and tetraploid cotton remain distinct from each such that paralogs can be distinguished. This research provides mapped DNA markers for intra-specific crosses and introgression of exotic germplasm in cotton.</p

    Ekstrakcija neobičnih tijela. Alain Platel, Izvan konteksta, za Pinu, les Ballet C. de la B. (Festival svjetskog kazališta)

    Get PDF
    Supported by the German Science Foundation, grants # Inst 247/665-1 FUGG and ES 161/9-1. SSG acknowledges support by the Alexander von Humboldt Foundation, KJA by US National Science Foundation grants AGS-1501856 and NSF AGS-1501834, and JL and LS by the Belmont Forum and JPI-Climate, Collaborative Research Action INTEGRATE.Over the past two decades, the dendroclimate community has produced various annually resolved, warm season temperature reconstructions for the extratropical Northern Hemisphere. Here we compare these tree-ring based reconstructions back to 831 CE and present a set of basic metrics to provide guidance for non-specialists on their interpretation and use. We specifically draw attention to (i) the imbalance between (numerous) short and (few) long site chronologies incorporated into the hemispheric means, (ii) the beneficial effects of including maximum latewood density chronologies in the recently published reconstructions, (iii) a decrease in reconstruction covariance prior to 1400 CE, and (iv) the varying amplitudes and trends of reconstructed temperatures over the past 1100 years. Whereas the reconstructions agree on several important features, such as warmth during medieval times and cooler temperatures in the 17th and 19th centuries, they still exhibit substantial differences during 13th and 14th centuries. We caution users who might consider combining the reconstructions through simple averaging that all reconstructions share some of the same underlying tree-ring data, and provide four recommendations to guide future efforts to better understand past millennium temperature variability.PostprintPeer reviewe

    Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts

    Get PDF
    BACKGROUND: Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. RESULTS: Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3–79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. CONCLUSIONS: This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in subsequent breeding of agronomically adapted types, including cultivar development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-945) contains supplementary material, which is available to authorized users

    Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context

    Get PDF
    Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (∼900–1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially

    An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids.

    Get PDF
    Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work
    corecore